Currency Wars and the Making of the Next Financial Crisis in the Global Economy
February 12, 2025
The Emerging Phenomenon of Medical Tourism An emerging trend in healthcare management is the phenomenon of medical tourism or the mixing of tourism with visits for medical treatment. This medical tourism has become popular in recent years mainly because of the fact that healthcare has become prohibitively expensive in the West and as the Eastern […]
Why Do Silicon Valley and Bangalore Score over Regions and Cities? Silicon Valley in California State in the United States and Bangalore in India, as well as Shanghai in China, are known to be hotspots of innovation wherein they attract the best talent and the most number of startups as well as entrepreneurs compared to […]
The new age mortgage market was extremely unlike the old one. The old one used to work based on a simple mortgage contract between the borrower and the lender. However, in the previous few articles, we read about how the system has completely changed. Instead of the bank holding the loan for its entire tenure, […]
The Behavioural Approach came into existence during early twentieth century as a response to the then much discussed about Psychoanalytic theory. Since, Psychoanalytic theory lacked scientific approach and could not be subjected to experimental techniques for making predictions. On the other hand, behaviourists reckoned that different behavioural predispositions can be explained scientifically. Behavioural approaches have […]
What is online marketing and how it Works? Ever wondered how websites give away much for free or for low prices and offer lots of information and other such conveniences? Did you ever felt the need to know how online marketing works with terms such as clicks, click through, eyeball views, and likes and shares […]
An empirical study begins with writing a hypothesis. If there is no hypothesis, we will not be able to test any cause and effect relationship. Therefore, it’s important to write a hypothesis that can be tested and can offer some great insights into a situation.
We’ve been using the word “hypothesis” quite frequently in previous econometrics articles. In fact, we have represented a hypothesis statistically, developed econometrics models and calculated the extent to which an independent variable affects a dependent variable. However, we haven’t formally defined it. So, here we go:
In the simplest words, a hypothesis:
And a statistical hypothesis is an assumption about a situation or a population that can be represented and tested via any or a combination of statistical methods.
Therefore, the main elements of a hypothesis include:
However, a meticulously thought and refined hypothesis is not a guess.
You know what a hypothesis is; what purpose it serves; how it is to be tested. The entire study or experience revolves around a hypothesis. So, a slight mistake in writing a hypothesis could result in wastage of time, money and effort.
While testing a hypothesis is a complex procedure, writing a hypothesis is the trickiest part. Needless to say, you need to be extremely careful when writing a hypothesis that you’re going to test. It is thinking about the right question – a question that can be tested and results obtained from it can enhance your understanding or meet your objectives.
Remember that there is no single tried and tested method of writing a hypothesis. You can see a generic relationship between two variables and then can refine it. Here is an example:
“Males and females differently handle employee issues”.
In this statement, we wrote a generic hypothesis. It is not measurable.
“Females handle employee issues better than males”.
The second statement provides a direction, as in who does better. When you compare two things, it means a situation is measurable.
“If females are assigned the task of handling employee issues, then they will do a better job than males because females have higher emotional quotient”.
The third statement, as you can see, offers specific details. The difference in the level of emotional quotient of males and females sets the scene. It is measurable and quantifiable.
Therefore, a well written hypothesis should be:
Hypothesis testing refers to a formal process of investigating a supposition or statement to accept or reject it. The econometricians examine a random sample from the population. If it is consistent with the hypothesis, it is accepted. Otherwise it is rejected.
There are two types of hypothesis – Null and Alternative.
A hypothesis test concludes whether to reject the null hypothesis and accept the alternative hypothesis or to fail to reject the null hypothesis. The decision is based on the value of X and R.
Points to be noted:
Before we jump onto the process of hypothesis testing, let’s learn about the errors that can result from it. The errors are divided into two categories:
Examples:
Examples:
When Null Hypothesis is:
True | False | ||
Reject | Type I Error | Correct Decision | |
Do Not Reject | Correct Decision | Type II Error |
When Alternative Hypothesis is:
True | False | ||
Reject | Type II Error | Correct Decision | |
Do Not Reject | Correct Decision | Type I Error |
Econometricians follow a formal process to test a hypothesis and determine whether it is to be rejected. The steps include:
The first step involves positioning the null and alternative hypotheses. Remember, that these are mutually exclusive. If one hypothesis states a fact, the other must reject it.
Consider statistical assumptions – such as independence of observations from each other, normality of observations, random errors and probability distribution of random errors, randomization during sampling, etc.
This includes deciding the test which is to be carried out to test the hypothesis. At the same time, we need to decide how sample data will be used to test the null hypothesis.
At this stage, sample data is examined. It’s when we find scores – mean values, normal distribution, t distribution, z score, etc.
This stage involves making decision to either reject the null hypothesis in favor of alternative hypothesis or not to reject the null hypothesis.
This is an extension of the last step - interpreting results in the process of hypothesis testing. A null hypothesis is accepted or rejected basis P value and the region of acceptance.
P value – it is a function of the observed sample results. A threshold value is chosen before the test is conducted and is called the significance level, which is represented as α. If the calculated value of P ≤ α, it suggests the inconsistency between the observed data and the assumption that the null hypothesis is true. This suggests that the null hypothesis must be rejected. However, this doesn’t mean that alternative hypothesis can be accepted as true. This is when Type I error occurs.
Example: You roll a pair of dice once and assume that these are fair and hence the result shown by rolling the dice would be fair.
The null hypothesis is – the dice are fair. You’ve assumed a significance level (α) of 0.04.
Now you roll the dice and observe that both show 6. The p value will be 1/36 or 1/ (6*6) assuming that the test static is uniformly distributed. The p value comes out to be 0.028 which is less than the assumed value of α. On this basis the null hypothesis is rejected. It suggests that the assumption suggesting that dice are fair is not correct.
Region of Acceptance – It is the range of values that leads you to accept the null hypothesis. When you collect and observe sample data, you compute a test static. If its value falls within the specific range, the null hypothesis is accepted.
Example: You might hypothesize that the average weight of the students in a school is 30 kgs. To test this hypothesis, you collect a random sample and compute the mean score. If the sample mean falls close to the hypothesized mean, say between 29 and 31, you accept the null hypothesis. The region of acceptance, therefore, is 29 and 31. The values falling outside this region will fall in the region of rejection.
The region of acceptance or rejection can be directional or non-directional. Basis this, we decide whether to perform one-tailed or two-tailed test to accept or reject the hypothesis.
When the region of acceptance falls entirely on one side of the tail of distribution, one-tailed test is conducted. This means in a test of a statistical hypothesis when values fall outside the specific region only on one side of the sampling distribution, it is one-tailed test.
Example: A null hypothesis says that the marriageable age of a person is greater than or equal to 24. Then, the alternative hypothesis would be that the marriageable age is less than 24. The region of rejection, in this case, would be on the left hand side of the sampling distribution, which is the set of numbers less than 24.
When the region of rejection falls on the both sides of sampling distribution, it’s a two-tailed test.
Example: The null hypothesis says that the marriageable age of a person is equal to 24. Then, the alternative hypothesis would be that the marriageable age is less than or greater than 24. The region of rejection, in this case, would be on both sides of the sampling distribution, which are two sets of numbers – one greater than 24 and the other less than 24.
Sample Problem
Election commission supposes that at least 80% of the 1,000,000 voters will turn up to vote in upcoming elections. A survey of 100 randomly sampled voters finds that only 71 percent will turn up. How to find the region of acceptance, assuming a significance level of 0.05 or 5%?
Solution:
Formulate hypotheses
Null Hypothesis: At least 80% of the voters will turn up to vote.
H0 suggest that P ≥ 80
Alternative Hypothesis: Less than 80% will turn up to vote.
Ha suggests P ≤ 80
Data Sampling
The sample of the population is taken randomly.
Formulating an Analysis Plan
The proportion of sample voters who say that they will turn up to vote is 71% or .71. This is also the test of statistic.
Investigating the Data
Let’s assume that the mean of sample data is .80, which is hypothesized proportion of sample which will turn to vote.
Standard deviation (σ) = √ [ {P*(1-P)/n} * {(N-n)/(N-1)} ]
P = test value specified in null hypothesis
n = sample size
N = population size
σ = √ [ {(0.80 * 0.20)/100} * {(1,000,000 – 100)/(1,000,000 – 1)} ]
σ = √ [0.0016 * 0.9999] = √ 0.0015998 = √0.0016 = 0.04
Finding the lower and upper limits of region of acceptance
The upper limit will be equal to 100% or 1 since this is the highest proportion of the population.
The lower limit (LL) = P(X’ ≤LL) = α = 0.05
If we put the values in a statistical normal distribution calculator, LL comes out to be 0.734.
This means that the region of acceptance lies between 0.734 and 1.
Accepting or Rejecting the Hypothesis
The survey on sample proportion suggested that 71% voters will turn up to vote. But the region of acceptance is between 0.734 and 1. It means that .71 falls out of the region of acceptance and falls in the region of rejection on the left hand side. Therefore, we reject the null hypothesis that 80% of the voters will turn out to vote in upcoming elections.
Your email address will not be published. Required fields are marked *